
NASA-CR-Z021_9

/z./- JC'. ',L.

Object-Oriented Implementation of the NAS Parallel

Benchmarks using Charm++*

Sanjeev Krishnan, Milind Bhandarkar and Laxmikant V. Kaid

Dept of Computer Science, University of Illinois, Urbana, IL 6[801

E-mail: { sanjeev,milind,kale} @cs.uiuc.edu

1 Introduction

This report describes experiences with implementing the NAS Computational Fluid Dynamics

benchmarks using a parallel object-oriented language, Charm++. Our main objective in imple-

menting the NAS CFD kernel benchmarks was to develop a code that could be used to easily

experiment with different domain decomposition strategies and dynamic load balancing. We also

wished to leverage the object-orientation provided by the Charm++ parallel object-oriented lan-

guage [7, 8], to develop reusable abstractions that would simplify the process of developing parallel

applications.
We first describe the Charm++ parallel programming model and the parallel object array

abstraction, then go into detail about each of the Scalar Pentadiagonal (SP) and Lower/Upper Tri-

angular (LU) benchmarks, along with performance results. Finally we conclude with an evaluation

of the methodology used.

2 The Charm++ parallel object-oriented programming model

This work is based on the parallel object-oriented language Charm++[7, 8], an extension of C++.

Charm++ is an explicitly parallel language, whose parallel constructs are modeled after the Charm

parallel programming system [4]. Its innovative features include message driven execution for la-

tency tolerance and modularity, dynamic creation and load balancing of concurrent objects, branched

objects which have a representative on every processor, and multiple specific information sharing ab-
stractions. This section describes the essential features, syntax, and implementation of Charm++.

Charm++ was designed to address the issues of portability, need to deal with communication

latencies, support for irregular and dynamic computation structures, and reuse of parallel software

modules.

j

2.1 Message Driven Execution

C,harm++ uses message driven execution to overcome the problem of communication latency. In

message driven execution, computation is initiated in response to the availability of a message.

In Charm++, messages are directed to a method inside an object. Messages received from the

network are kept in a queue, from which the system scheduler picks a message, and invokes the

specified method within the object at which the incoming message is directed.

*This research was supported by the NASA grant NAG 2-897.

' U0 0 3 1 96
1

Message-driven execution, combined with an asynchronous (non-blocking) model of communi-

cation, exhibits latency tolerance by overlapping computation and communication adaptively and

automatically. Each processor typically has multiple objects waiting to be scheduled based on

availability of messages directed at them. A remote operation (such as fetching remote data), is

initiated by an object by sending a message asynchronously to an object on the remote processor

and returning control to the runtime system. The runtime system schedules pending computations

in any other objects on the processor. When the remote data finally arrives in the form of a mes-

sage, the runtime system can schedule the requesting object again. Multiple remote operations

could be initiated by a single object and could be processed in the order these operations fin-

ish. Thus message-driven execution has several advantages over the traditional "blocking-receive"

based communication, offering better performance through adaptive scheduling of computations.

Message-driven execution also helps to promote modularity and reuse in parallel programs without

losing efficiency, by allowing the overlap of computations across modules.

2.2 Dynamic Object Creation: chares and messages

In order to support irregular computations in which the amount of work on a processor changes

dynamically and unpredictably, Charm++ allows dynamic creation of parallel objects (chares),

which can then be mapped to different processors to balance loads. A chare is identified by a

handle, which is a global pointer.

Chares communicate using messages. Sending a message to an object corresponds to an asyn-

chronous method invocation. Message definitions have the form :

message class _[essageType {
// List of data and function members as in C++

};

Chare definitions have the form

chare class ChareType {

// Data and member functions as in C++.
// One or more entry functions of the form :

entry:
void FunctionName(NessageType *MsgPointer)

{ CJ++ code block }

};

The entry function definition specifies code that is executed atomically when a message is

received and scheduled for processing. Only one message per chare is executed at a time. Thus

a chare object defines a boundary between sequential and parallel execution : actions within a

chare are sequential, while those across chares may happen in parallel. Entry functions are public

object methods with message as a parameter and no return value. The handle of a chare is of

type "ChareType handle", and is unique across all processors. While multiple inheritance, dynamic

binding, and overloading are supported for sequential objects by C++, Charm++ extends these

concepts for chares (concurrent objects), thus permitting inheritance hierarchies of chare classes.

Every Charm++ program must have a chare type named main, which must have the function

main. There can be only one instance of the main chare type, which usually executes on processor

0. Execution of a Charm++ program begins with the system creating an instance of the main

chare and invoking its main function. Typically, this function is used by the programmer to create

chares and branched chares and initialize shared objects.

Chares are created using the operator newchare, similar to the new in C++ :

newchare ChareType(MsgPointor), where CharaType is the name of a chare class. This operator

deposits the seed for a new chare in a pool of seeds and returns immediately. Later, the runtime

system will actually create the chafe on some processor, as determined by the dynamic load balanc-

ing strategy. When the chare is created, it is initialized by executing its constructor entry function

with the message contained in MsgPointer as parameter. The user can also specify a processor

number as an optional argument to create the chare on specific processor_ thereby overriding the

dynamic load balancing strategy. A chare can obtain its own handle once it has been created and

pass it to other objects in messages.

Messages are allocated using the C++ new operator. Messages can be sent to chares using the

notationChareHandle=>EF(MsgPointer)I This sends the message pointed to by MsgPointer to the

chare having handle ChareHandle at the entry function EF, which must be a valid entry function

of that chare type.

2.3 Dynamic load balancing

Charm++ supports dynamic object creation with dynamic load balancing libraries which help to

map newly created chares to processors so that the work is balanced. Since the patterns of object

creation vary widely among applications, and the characteristics of the underlying parallel machine

also vary, different dynamic load balancing strategies become suitable in different circumstances.

Charm++ provides many generic libraries for dynamic load balancing, which can be selected by the

user at link time, depending on the requirements of the application. These libraries are implemented

as modules on top of the basic runtime system.

2.4 Branched chafes

A branched chare is a group of chares with a single name. A branched chare has one representative

(branch) chare on each processor, and has a single global handle. One can asynchronously invoke

a method on (i.e. send a message to) a representative of a branched chare by specifying its handle

as well as the processor. In addition, one can synchronously (i.e. just like a sequential function

call) invoke a method within the local representative of a branched chare.
Branched chafes can be used to implement distributed services such as distributed data struc-

tures, global operations and high level information sharing abstractions, thereby encapsulating

concurrency. They can be used for static load-balancing in object-parallel computations (each

representative performs the same computation on the data owned by it). They also provide a

convenient mechanism for distributed data exchange between modules : the representatives of a

branched chare in one module hand over the data to the representatives in the other module on

their own processors, without the need for centralized transfer. Finally, branched chares can also be

used to encapsulate processor-specific information. (Indeed branched chafes are used to implelnent

many dynamic load balancing strategies.)
It is important to underscore that branched chafes are objects. In particular, there may be

multiple instances of the same branched chare class. So, simple local function calls do not provide

the same service as the invocation of a method in a local representative branch.

Branched chares are also created with the newchare operator : newchare ChareType(MsgPointer).

This causes the runtime system to create a branch on every processor and initialize it by executing

l(Nol,e the syntactic difference between asynchronous message sending at,(I sequential met]m(] invocation as in

c++.)

its constructorentry function. Branchedcharesareusuallycreatedin the main function of the
mainchafe,in whichcasethisoperatorreturnsthe handleof thenewlycreatedbranchedchare.
ChareHandle[lOCAU]->DataMember and ChareHandle[lOCAl]->FunctionMember()are used to access

public members of the local branch of a branched chare.

ChareHandle[P]=>EF(MsgPointer) sends a message to the function EF in the branch of a branched

chafe on the processor P.

ChareHandle [ALL] =>EF(MsgPointer) results in a message being broadcast to all branches of a branched

chare (i.e. to all processors).

2.5 Specific information sharing abstractions

Charm++ provides specific abstract object types for sharing information. Each abstraction for

information sharing may be thought of as a template of an abstract object, with methods whose code

is to be provided by the user. These shared objects have a global handle (name), and can be accessed

on all processors, but only through their specific methods. These abstractions may be implemented

differently on different architectures by the Charm++ runtime system, for efficiency. Some of the

abstractions provided by Charm++ are: read-only variables, distributed tables, accumulators, and
monotonic variables. Additional abstractions may be added as libraries, as tile need for them arises.

2.6 Other Charm++ features

Prioritized Execution : Charm++ provides many strategies that the user can select for manag-

ing queues of messages waiting to be processed. Some of them (FIFO, LIFO, etc) are based solely
on the temporal order of arrival of messages. However, in many applications (such as algorithms

with a critical path, search-based algorithms, and discrete event simulations), it is necessary to al-

low the application to influence the order of processing of messages by assigning message priorities.

Charm++ supports integer priorities as well as bit-vector priorities (with lexicographical com-

parison of bit-vectors determining order of processing), which are especially useful for prioritizing

combinatorial search algorithms.

Conditional Message Packing : Charm++ allows arbitrarily complex data structures in mes-

sages. On private memory systems, pointers are not valid across processors, hence it is necessary

to copy (pack) the pointer-linked structure into a contiguous block of memory before sending the

message. However, packing is wasteful if the message is sent to an object on the same processor, or

on shared memory systems. To allow optimal performance in this context, for messages involving

pointers, the user is required to specify the methods pack and unpack in the message class for pack-

ing and unpacking messages that are called by the system just before sending and after receiving a

message, respectively. Thus only messages that are actually sent to other processors are packed.

Quiescence Detection : Since the C.harln++ model provides independently executing parallel

objects, there is no single global thread of control, hence detecting quiescence (termination) of

a program is difficult. Charm++ provides a quiescence detection library for this purpose, which

detects quiescence (when no object is executing any computation and all messages sent have been

processed). The programmer may then choose to simply exit, or start the next phase of the parallel

program.

2.7 Implementation

C,harm++ has been implemented as a translator and a runtime system. The translator converts

C,harm++ constructs into C++ constructs and calls to the runtime system. The runtime system is

layeredinto a languageindependentportablelayerConverse, on top of which is the Cha_ Kernel

layer.

2.7.1 Converse : Portability and interoperability

The Converse layer provides a portable machine interface which supports the essential parallel op-

erations on MIMD machines. These includes synchronous and asynchronous sends and receives,

global operations such as broadcast, atomic terminal I/O, and other advanced features. Some im-

portant principles that guided the development of Converse include need-based cost (e.g. Charm++

should not need to pay the overhead of a tag-based receive mechanism provided by an underly-

ing layer, since Charm++ uses message-driven execution; also, a system such as PVM should not

have to pay the cost of prioritized scheduling that Charm++ needs), efficiency (the performance

of programs developed on top of Converse should be comparable to native implementations) and

component based design (the Converse layer is divided into components with well-defined interfaces

and possibly multiple implementations which can be plugged in as required by higher layers).

Converse is designed to help modules from different parallel programming paradigms to inter-

operate in a single application. In addition to common components such as the portable machine-

interface, it provides paradigm-specific components such as message managers and thread objects,

that can be customized and nsed to implement individual language runtime layers. Converse sup-

ports both SPMD style programs (which have no concurrency within a processor and explicit, static

flow of control) as well as message-driven objects and threads (which have concurrency within a

processor and implicit, adaptive scheduling).
The Converse machine interface has been ported to most parallel machines. Languages imple-

mented on the Converse framework include Charm, Charm++, PVM (messaging), threaded PVM,

SM (a simple messaging layer), and DP (a data parallel language).

2.7.2 Chare Kernel

The Chare Kernel layer was developed originally to support Charm, but was modified to support

C++ interfaces required for Charm++ too. It implements various functions such as system initial-

ization, chafe creation, message processing (to identify the target object and deliver the message

to it), performance measurements, quiescence detection, etc.
One important function of the Chafe Kernel is to map parallel class and function names into

consistent integer ids which can be passed to other processors. This is required because function

and method pointers may not be identical across processors, especially in a heterogenous execution
environment. The Charm++ translator cannot assign unique ids to classes and methods at compile

time, because Charm++ supports separate compilation, and the translator does not know about

the existence of other modules. Also, while passing ids for methods across processors, this mapping

must be implemented so as to support inheritance and dynamic binding : when a sender sends a

message to a chafe C, at an entry function E defined in C,'s base class, C must call its own definition

of E if it has been redefined, otherwise it must call its base class' definition of E.

To meet these requirements the C,hare Kernel provides a function registration facility, which

malntains the mapping from ids to pointers. The translator-generated code uses this registration

facility during initialization at run-time to assign globally unique indices to chare and entry function

names. This unique id can be passed in messages across modules. The translator also generates stub

fllnctions for every entry function in every chare class. When a message is received and scheduled

for processing, the Chare Kernel uses this stub function to invoke the correct method in the correct

chare object, bbr dynamic binding to work, the stub function invoked is the one corresponding

to the static type of the chafe handle at the call site; the C++ virtual function mechanism then

invokes the correct method depending on the actual type of the chafe object.

The Chare Kernel uses a scheduler (defined as a component of Converse) which is essentially a

"pick and process" loop. It picks tip incoming messages from the Converse message buffer, enqueues

them by priority according to a user-selected queueing strategy, and then picks the highest priority

message from the queue for processing.

Finally, the Chare Kernel also manages chare handles (which are essentially global pointers),

and does the mapping from local object pointers to chafe handles and vice versa. Branched chare

handles need to be managed slightly differently, since they have a single global handle for a group

of chares : the Chafe Kernel needs to ensure that a consistent handle is used on all processors.

3 Parallel Array Abstraction

Since the NAS parallel benchmarks involved computations on a three dimensional data space, the

natural parallelization scheme was to divide these arrays in many smaller cubes and perform com-

putations on these cubes in parallel while preserving data dependencies. In order to represent a

multi-dimensional array in parallel, we developed a parallel object array abstraction for Charm++

[9]. This abstraction allows the programmer to create an array of parallel objects, map it to proces-

sors according to the parallel algorithm requirements, send messages to selected elements, perform

global operations such ms multicasts, and specify new mappings for dynamic decompositions.

A parallel array is a group of objects (the array elements) with a common global name (id),

which are organized in a multidimensional, distributed array, with each array element identified

by its coordinates. The mapping of array elements to processors is specified by a user-provided

mapping function. A default mapping is also provided for cases when the mapping is not significant.

The data space of the problem could be partitioned into contiguous blocks and could be assigned

to parallel objects that are elements of the parallel array.

3.1 Parallel Array Definition

A parallel array is defined as a normal parallel object (chafe) class in Champ++, except that it

must inherit from the system-defined base class array. This base class provides the following data

fields :

• _chishandle : this gives the unique handle (global pointer) of the array element.

• thisgroup : this gives the global id by which the whole array is known.

• thisi, thisj, thisk : these give the coordinates of the array element 2.

Messages that are sent between array elements must inherit from the system-defined message

class m'raymsg. The following code gives an example of an array definition.

message class MessageType : public arraymsg {

// list o_ data fields to be sent

};

2C'urrently, ouly 1, 2, or 3-dimensional arrays are supported, although this can be easily extended to higher
dimensions. For brevity, all the examples in this section assume a 2-dimensional array.

chafe class MyArray : public array {

// list of private and public data and function members

entry:

// list of "entry functions" where messages are received

MyArray(MessageType *m) ; // constructor

void EntryFunction(MessageType *m) ;

};

3.2 Parallel Array Creation

A parallel array is created using the operator new.qroup, which has the following syntax :

MapFunctionType mymapfn ;

MessageType *msgptr ;

MyArray group arrayidl = newgroup MyArray[XSize] [¥size] (msgptr) ;

Myhrray group arrayid2 = newgroup (mymap_n) Myhrray[XSize] [Ysize] (msgptr) ;

The code above creates two-dimensional parallel arrays with sizes XSize and YSize in X and Y

dimensions. The newgroup operator causes all the array element objects to be created (and their

constructors invoked) on their respective processors. The parameter msgptr is sent to all processors

as the parameter to the constructor for each array element. The first array above uses the default

mapping function. The second array has a user-specified mapping function taymapfn, which takes

the coordinates of an element as input and returns the processor where the element is located.

neugroup is a non-blocking operator that immediately returns the id of the newly created array,

which has the type MyArray group, and is analogous to a global pointer to an array. Because

of its non-blocking nature, the elements of an array might not have been created when newgroup

returns the array id. If necessary, the programmer may explicitly synchronize after initialization

of all array elements on all processors by using a suitable reduction or synchronization operation.

Currently, parallel arrays may be created only from processor 0.

3.3 Asynchronous messaging: remote method invocation

The parallel array library provides both point-to-point as well as multicast messaging. All messag-

ing is asynchronous (no reply value is allowed), in keeping with the non-blocking communication

paradigm of Charm++. If a reply is desired, the receiving object must send a reply message back

to the sender object.
The syntax for point-to-point asynchronous messaging is :

arrayid [i] [j] =>EntryFunction(msgptr) ;

where arrayid is the "global pointer" to the parallel array, i,j are the coordinates of the recipient

array element, EntryFunction is tile function to be invoked in the receiving object, and msgptr is

the message to be sent across, which is passed as the sole parameter to tile function.
The syntax for multicast asynchronous messaging is :

arrayid[il..i2][jl..j2]=>EntryFunction(msgptr) ; // multicast to sub-array

arrayid[ALL] [j]=>EntryFunction(msgptr) ; // multicast to column

arrayid[i] [ALL]=>EntryFunction(msgptr) ; // multicast to row

arrayid[ALL] [ALL]=>EntryFunction(msgptr) ; // multicast to whole array

If an array element is known to be on the local processor, its data and function members may

be accessed as in sequential C++ :

arrayid['i] [j]->datamember

arrayid[i] [j]->functionmember(...)

3.4 Remapping and migration

The parallel array library supports both synchronous remapping and asynchronous object migra-

tion. Synchronous remapping must be initiated from processor 0 as follows :

arrayid->remap((MapFunctionType)newmapfn, return_chare3andle,
_(ReturnChareType::ReturnFunction)) ;

netmapfn is the new mapping function. All array elements will be moved from their original

locations to their new locations as specified by the new mapping function. After all elements

have been installed on their new locations, a message is sent to the function ReturnFunction in

the chare object specified by return_chare_hand3.e. This provides a synchronization point after

remapping. The user program must ensure that no messages are sent to any elements of the array

being re-mapped.

Sometimes such synchronization is impossible or inefficient. Asynchronous remapping or "mi-

gration" is activated by each array element independently, by calling the function

migrate ((MapFunct ionType) newmapfn)
on the array element to be moved. The nemaapfn parameter specifies the new mapping function,

which tells the run-time library the destination processor for the array element. The call results

in only the specified object being moved to its destination processor. The run-time library will

correctly forward messages directed to the migrating array element to its new location.

The actual steps performed by the runtime system while migrating an object are :

Before migrating an object, the runtime library calls a user-provided pack function on the

object, which copies the object's data area into a contiguous message buffer. The programmer

must provide a pack function for every object type that needs migration. (In future, we plan

to automatically generate such pack and unpack functions based on the interface specification

for array elements.)

2. Send the message to the object's destination processor

3. Create the new object

4. Initialize the object's data area using the message buffer. This is done by another user-

provided unpack function. (Note: the pack and unpack functions are virtual functions defined

in the base class array).

5. Forward messages directed to the object from the old processor to the new processor.

3.5 Implementation

The parallel array library is implemented on top of the Converse interoperable run-time framework

[6]. The library can thus be used in conjunction with modules written in other programming systems
such as PVM and MPI. Although the parallel array concepts we developed were implemented in

the context of the Charm++ parallel object-oriented language, the essential features are language-

independent. Currently we are in the process of modifying the Charm++ translator to translate

the parallel array syntax into calls to C++ fimctions in the runtime library. The runtime library

provides functions to create an array, send message to all elements of an array or to a subset of

array, and various utility functions.

3.6 Typical Usage of Array Abstraction

In this section we describe how to use the Array abstraction in the current form (that is, without

the translator modifications supporting the syntax described in earlier section.)

Createhrray function creates a parallel array of objects. The programmer needs to provide
the Createhrray function with a mapping function. The mapping function takes group id and the

coordinates as input parameters and returns a processor number on which the array element will

be placed. An example of a simple mapping function is given below.

int Grid3D(int gid, int x, int y, int z)

{
return (xT,NX + (yT,NY)*NX + (zT,NZ)*NX*NY);

}

Where total number of processors is IX x NY × NZ.
An array is typically created in the main function of the main (hare. One needs to allocate a

message and fill in the appropriate fields in the message that will be sent to each element of the

array for initialization. An example of array creation is given below:

msgptr = ne_ CreateMessage;

msgptr->m = thishandle;

msgptr->dt = dr;

msgptr->omega = omega;

msgptr->itmax = itmax;

//cubearray = CreateArray (Chare (cube),EP (cube, cube) ,msgptr,

Grid3D ,ncx ,ncy ,ncz) ;

cubearray = Createhrray (_CK_chare_cube, _CK_ep cube_cube ,msgptr,

Grid3D ,ncx ,ncy ,ncz) ;

tIere, a message of type CreateMessage is being sent to the newly created array of cube (hares at

the constructor entry function of each chafe. The name mangling will be handled by the translator

once it supports the array abstraction. However, currently the programmer needs to take care of it.

(One can use macros Chare and EP to achieve this as shown in comments in the above example.)

Chare names are translated to integers of the form _CK_chare_charename and the entry fimctions

are translated as _CK_ep_charename_entryname. ncx, ncy, and ncz are the sizes of the array in X,

Y and Z directions respectively.

The synchronization requirement after the creation of array demands that the newly created

chafes in the array perform a global reduction. This synchronization code needs to be provided by

the programmer. Typically, this could be achieved by each chare sending a message to the main

(hare and awaiting a message from the main (hare to trigger computation. The main (hare keeps

track of how many synchronization messages it receives and then sends a message to all the elements

of the array to start computation. Messages could be sent to a particular element of an array using

Sendhrray function or multicast to the entire array (or its subset) using Sendhrraygange function.

4 The NAS Scalar Pentadiagonal (SP) benchmark

The NAS Scalar Pentadiagonal (SP) benchmark [1] is one of three simulated (]ompntational Fluid

Dynamics benchmarks in the NAS benchmark suite. It is intended to represent the principal

computation and comm(tnication requirements of CFD applications in use today.

The SP benchmark involves the solution of multiple independent systems of scalar pentadiagonal

equations which are not diagonally dominant. The computational space is a three-dimensional

structuredmeshconsistingof 64x 64x 64grid points.Themethodusedisan iterativeAlternating
Direction Implicit (ADI) method. In eachiteration thereare three "sweeps"successivelyalong
eachof the threecoordinateaxes.Thusthe methodinvolvesglobalspatialdatadependences.

Our mainobjectivein implementingtheNASSPbenchmarkwasto developacodethat could
be usedto easilyexperimentwith differentdomaindecompositionstrategies.We alsowishedto
leveragethe object-orientationprovidedby the Charm++ parallel object-oriented language [7, 8],

to develop reusable abstractions that would simplify the process of developing parallel applications.

4.1 Parallelization schemes

The steps in the the numerical algorithm [3] which are significant for parailelization are :

Computation of the RIIS vector of the partial differential equation. Each grid point in the

cubical mesh needs values of the U matrix from two neighboring grid points on either side,

in each of the three dimensions. This corresponds to six "parallel-shift" operations.

Solution of a system of linear equations in the x-direction. Each grid point initially needs

values from two succeeding grid points in the x-direction (corresponding to a shift operation

in the negative-x direction). Then there is a sweep along the positive-x direction in which

each grid point computes values that are needed by the next two points.

• Solution of a system of linear equations in the y-direction. This is similar to the previous

step, except that communication is along the y-direction.

• Solution of a system of linear equations in the z-direction. This is similar to the previous

step, except that communication is along the z-direction.

Parallelizing these steps requires decomposition of the three-dimensional computational array

among processors. This decomposition must be done so as to balance computational load across

processors as well as reduce inter-processor data communication.

Three of the most common methods used to para]lelize ADI methods are [11] :

Pipelined static block decomposition : each processor is statically allocated a contiguous three-

dimensional block of grid points for the entire length of the computation. The block is made as

close to cubical as possible to minimize the amount of communication (which is proportional

to surface-area of the block). During the sweeps, each processor receives boundary data from

the previous processor in the sweep direction, computes its data, and sends its boundary data

on to the next processor. In order to reduce idle times while processors wait for data from

previous processors, the computation is pipelined : each processor works on a slice of its grid

points, sends the resulting boundary on to the next processor, and then goes on to the next

slice. The disadvantage of this decomposition is that many processors idle at the beginning

and end of the sweeps; moreover, there are many small messages sent between processors

corresponding to the boundary data for each slice, which could cause significant overhead on

machines with large message latencies.

Transpose-based dynamic block decomposition : the three-dimensional mesh is divided into

slabs oriented along the X direction first. After the X-direction sweep completes a transpose

operation is done to orient the slabs along the Y-direction, in preparation for the Y-sweep.

Finally, a third transpose operation is needed before the X-sweep of the next iteration. Thus

there are a total of three transpose operations needed per iteration. The advantage of this

10

method is that computations within each sweep are completely local to a processor. However,

the transpose operations between sweeps can result in significant overhead on bandwidth-
limited machines.

The multi-partition or Bruno-Capello decomposition [10, 2] : this is a static decomposition

where the computational mesh is divided into cubes, and each cube is assigned to a processor

such that all processors are active at all stages in each of the three sweeps. In other words, each

coordinate plane in the computational space contains cubes on all processors. Thus processor

loads are balanced during all stages of all sweeps, and also no transpose operations are needed.

The minimum number of cubes needed for this decomposition is p3/2 (where P is the number

of processors), so that each processor has x/_ cubes. The cube with coordinate (i,j,k) is

allocated to processor (i - k)%s + s((j - k)%s) + 1, where s = _-fi and 1 <= i,j,k <= s.

The tradeoffin the multi-partition method is that computations within a sweep involve cross-

processor messaging.

4.2 Implementing the SP benchmark using parallel arrays

We developed the following abstraction for the NAS SP benchmark code : The computational

space is represented as a three-dimensional array of cubical sub-spaces. Each cube is represented

by a parallel object in Charm++, which communicates with other cubes by sending and receiving

messages. Thus the parallel program consists of a network of communicating objects.
The different decomposition/mapping strategies are expressed by simply specifying a different

mapping function for the parallel array. E.g. the mapping function for the multipartition (Bruno-
Capello) decomposition is :

int MultiPartitionMapFn(int arrayid, int i, int j, int k)

{ // return processor number owning object (i,j,k)

return (XArraySize* ((i-k+XArraySize)_.XArraySize) +

(j-k+YArraySize)7.YArrayS±ze) ;

}

For the transpose method, all adjacent cubes along the direction of the sweep are mapped to the
same processor. E.g. the mapping function for the sweep along the X-axis is :

int XSweepMapFn(int arrayid, int i, int j, int k)

{
return (ZArraySize * j + k) ;

}

The transpose is effected by simply doing a remap operation on the parallel array between sweeps,

with the mapping function corresponding to the orientation of the next sweep. Thus we have a very

flexible, elegant code which allows us to concentrate on experiments with the application, instead

of getting involved in the details of implementing the decomposition.

The asynchronous migration facility provided with parallel arrays allows us to further optinfize

the transpose method by overlapping communication and computation. Each cube object migrates

itself as soon as it has completed its work along one sweep. Thus the commnnication overhead

of transferring its data to another processor is overlapped with the computation performed by

other cubes. This overlap gives significant performance advantages over the traditional loosely-

synchronous (separate phases of computation and comnnlnication) implementations.

II

4.3 Performance results

Table 1 presents performance results for the different decompositions in the Charm++ implemen-

tation of the NAS SP benchmark. Sync-Transpose is the transpose-based dynamic block decom-

position. Async-Transpose is the dynamic block decomposition with asynchronous migration of

parallel objects for moving data between sweeps. Note that the only modification needed to change

the decompositions for the different runs was to change the mapping function.

Processors I 4 I 16 I 6't[256]

Sync-Transpose 8.08 3.01 1.98

Async-Transpose 7.81 2.54 1.40

Multipartition 24.63 7.60 1.98 1.00

Table 1: Time (in milliseconds) for different decompositions for the NAS SP benchmark (size A)

on the Intel Paragon.

The results show that the multipartition (Bruno-Capello) decomposition is the best overall, with

the Async-Transpose and Sync-Transpose decompositions being successively worse. The absolute

performance of our program does not compare well with performance numbers quoted by vendors

for the NAS benchmarks. This is mainly because our focus was on flexible parallelization issues,

and not on tuning the algorithm or code for sequential or absolute performance.

5 The NAS Lower/Upper Triangular (LU) benchmark

The LU benchmark is one of the three CFD kernels in NAS benchmarks. It solves a regular-sparse,

block (5 X 5) lower and upper triangular system. This represents the computations associated

with the implicit operator of a newer class of implicit CFD algorithms, and has a lower degree

of parallelism compared with other benchmarks in this suite. All the data-dependencies in this

benchmark are local (nearest neighbor.) The system of linear equations obtained by replacing the

spatial derivatives by second-order accurate, central finite difference operators is solved using the

symmetric successive over-relaxation scheme. Each iteration of this algorithm consists of

• Computing the Right tiand Side explicitly.

• Forming and solving the regular, sparse, block lower triangular system.

• Forming and solving the regular, sparse, block upper triangular system.

• Updating the solution.

We used a spatial domain decomposition strategy to split the computational domain into a

number of cubes. Different communication patterns develop as a result of data dependences in

the above steps in each iteration. Computing RtIS explicitly in the first step requires domain

boundaries to be communicated between neighboring cubes (in both positive and negative X, Y

and Z directions.) In the second step, forming the lower triangular system is a completely local

operation and does not need any data from neighbors, tlowever, solving the system requires wave-

like communication pattern in the direction of diagonal of the computation domain. This is a

12

result of data-dependence where an element (i,j,k) needs elements (i,j- 1, k- 1),(i- l,j,k-

1) and (i - t,j - 1,k). Computation in step 3 requires a wave-like communication similar to

step 2 but in opposite direction. Thus, data-dependence mandates that there be three different

communication patterns in each iteration. Also, the local data-dependence requires that these steps

cannot be executed paraJlelly within the same iteration. This reduces the degree of parallelism in

this benchmark significantly. Figure 1 shows that the available degree of parallelism in our algorithm

in initial stages of the wave is very small. In the middle stages, where the wave reaches the principal

diagonal of the 3-D data space, the degree of parallelism is high and then it reduces again in the

later stages of the wave.

5O

E
q_
,mI

t_
I,.

¢¢

O

k=

a

45

40

35

30

25

20

15

10

5

0
0

/
I I I I "

5 10 15 20 25
StageNumber

Figure 1: Degree of Parallelism in LU

In algorithms such as these, the only sources of enhancing performance are proper scheduling

of work and overlapping communication and computation. One of the advantages of programming

this applic,'ttion in a message-driven language such as Charm++ is that, the progranlmer only

has to code the data-dependencies and leave the scheduling and overlapping communication and

computation to the run-time system.

The implementation of this benchmark using the parallel array abstraction in Charm++ for

domain decomposition is similar to the implementation of SP benchmark described in earlier section.

This substantiates one of our main claims in this work that, using parallel object-oriented languages

such as Charm++, one could develop reusable abstractions which could be used in development of

several applications, llowever, the approach taken to develop the parallel code for LU differs from

that of S_P. II_ develot)ing LU benchmark, we first converted the implementation of sequential LU

algorithm from FORTRAN to C++, forming private methods for individual cubes in the process.

Using the array abstraction to parallelize the C++ code was a very trivial task then. One of the

13

main advantageof this approachwasthat wewereableto eliminateerrorsdue to base-language
variationearlyin the processusingtoolsfor sequentialprograms,whicharemoreadvancedthan
their counterpartsin parallelprogramming.

Weobservedthat the LU benchmarkshoweddependenceto someextenton the actualplace-
mentof the cubesand the resultsof our experimentswith differentplacementstrategiesreflect
this observation.Our useof the parallelarrayabstractionin Charm++ allowed us to efficiently

experiment with different placement strategies as well as different domain decomposition strategies.

One of the placement strategies we used is shown in figure 2. For simplicity, we have shown

a wave-parallel placement pattern for a 2-dimensional 4 × 4 grid, placed using this strategy on

4 processors. The advantage of this placement strategy is that as the wave advances from one

diagonal to the another, all the objects executing methods concurrently are placed on different

processors. Therefore, we utilize all the processors optimally.

yJ

(0,3) ¢r,3)

\

\

(0,2)
Pl",

%

%

(0,1)
P2",,

(0,0)
P0",

po'_

P0",

(r,,0
P0",

c ,o)
Pl',

X

Figure 2: Wave-Parallel Placement Strategy

5.1 Performance Results

Our experiments were carried out on IBM-SP at Argonne National Laboratories. Charm++ is

implemented on top of the native MPL communication library on IBM-SP systems. We conducted

our experiments using 4 different decomposition strategies with ,1, 8 and 16 processors and four

different placement strategies (using different mapping functions during array creation.) The times

are given for 25 iteration in seconds (The complete bench mark requires 250 iterations.) The different

decompositions indicate the number of divisions of the computational domain in each direction.

For example, a _8× 8 × I decomposition means the computational domain was split into 8 parts in

1,1

X and Y direction,but wasleft untouchedin the Z direction, thusforming64 cubes. Our results

are comparable to numbers reported in [3] considering the experience of other users of IBM-SP at

Argonne National Labs that it is slower than other installations of IBM-SP by almost factor of 2

for most programs. Also, we have not optimized the sequential part of computations that are coded

in C++ rather than in FORTRAN which has a better set of optimization tools available for such

scientific computations.

Processors 4x 4x 1 4x4x4 8x8x 1 8x 8x8

4 370.580 308.072 322.450

8 231.840 151.379 179.884 413.638

16 210.931 96.273 119.704 81.930

Table 2: Time (in seconds) for different decompositions for the NAS LU benchmark (size A) on

the IBM SP using Wave-Parallel Mapping function.

Processors 4x4x 1 4x4x4 8x8x 1 8x8x8

4 453.809 298.159 300.545

8 430.003 289.487 220.567 343.630

16 ,123.968 289.297 219.503 320.542

Table 3: Time (in seconds) for different decompositions for the NAS LIT benchmark (size A) on

the IBM SP using 1D Grid Mapping function.

Processors 4x4x 1 4x4x4 8x8x 1 I 8x8x8

4 389.677 267.771 296.191

8 237.368 171.202 182.077 335.665

16 208.387 131.432 137.044 66.602

Table ,1: Time (in seconds) for different decompositions for the NAS LIT benchmark (size A) on

the IBM SP using 2D Grid Mapping function.

5.2 Performance Analysis of LU

This section presents our work on the performance analysis of the LU code performed using a

performance analysis tool for Charm and Charm++ programs, called Projections. Projections
is available as a trace generation facility for Chare kernel, the run-time system of Charm and

Charm++ languages; and as a performance visuahzation and analysis tool. It includes an expert

system that works with the trace data generated by the program and analyzes for critical paths,

phases and degree of parallelism within the code. For enal)ling projections trace generations, a

15

Processors 4x4x 1 4x4x4 8x8x 1 8xSx8

4 384.666 287.692 297.734 -

8 358.427 163.656 294.130 255.330

16 233.877 108.904 185.241 65.016

Table 5: Time (in seconds) for different decompositions for the NAS LU benchmark (size A) on

the IBM SP using 3D-Grid Mapping function.

Charm-b+ program should be linked by specifying -execmode projections on the Charm linker

command line. When this program is run, it produces trace files, one per processor. These files are

then used as input for the X-windows based Projections visualizations tool. This section presents

some of the analysis we did using Projections on the LU code.

One of the main reasons for performance degradation of parallel programs is the improper load-

balancing. Proper load-balancing is characterized by equal amount of computation on all nodes.

We checked the performance of LU for the amount of processing on each node. The processing time

on each processor is shown in figure 3. It is in the range of 48 to 56 percent of the total time on

each processor. This busy time is calculated based on the entire run of the program that includes

the Charm initialization time during which most processors are idle. However, during the SSOR

iterations, the busy time was 70 to 85 percent. Therefore, we concluded that LU is properly load

balanced.

Though the total load across all nodes was determined to be similar_ the regular structure of

our application demanded that each type of computations should be distributed in equal amounts

on all nodes for proper load balance. The main types of computations in LU are building the

matrices (sel;iv), solving the lower and upper triangular systems (b/1;s and buts respectively),

and computing the RHS (rhs). We have made each of these computations into entry methods of the

chare cube, therefore, determining the amount of each of these computations across all processors

amounts to finding out how many times each of these entry methods were invoked on each chafe.

Figure 4 shows this in a graphical format. We can conclude from figure 4 that the individual

computations were load balanced as well.

A not her reason for t he performance degradation especially in the light of our finding of low busy

time per processor is the overhead imposed by the run-time system in the form of message send-

ing, message processing and internal copying etc. However, the log files generated by Projections

indicated that a total of 4424 messages were processed for each iteration of LU by ea,ch processor.

From table 2, each iteration of LIT takes 3.24 seconds. Th,s the average grainsize of computation

during the iteration is 732.368/_seconds. Another experiment was run on SP2, which calculated

the overhead per message creation and processing. This involved running a simple pingpong pro-

gram written in Charm++ that transferred messages back and forth between two processors. This

experiment indicated that the average overhead per message processing was 126 #seconds. This

amounts to 17 % overhead per message.

Next we viewed the aggregate work on all processors as a function of time. And noticed the

distinct peaks for each of the iterations of LU. An iteration is characterized by forming RflS, solving

the lower triangular system and solving the upper triangular system. We noticed that the amount

of work done is at its peak in the middle of an iteration. This was expected since the degree of

parallelism is at its highest in a wave-parallel distribution when the wave reaches the diagonal of the

cube. Thus we figured out that this dependence is the main cause of low performance. We analyzed

16

IES&q6ES

A
i

J

:

I
i

t
/

• 1 I
0 I. 2 3 4 5 6 7 8

PI_CESS_S

/
/

f

/
l

/
/

"_/ I I I I I

10 it t2 13 14 t5

56

55

54

53
EREENT
]_SY

52

51

50

43

48

....... Percelt _

Figure 3: Busy Time Per Processor

17

i Next]

_7

_6

35_5

_2_4

_Cr_3

2742

2471

HESSAGES_0

11/6

574

3O3

32
i t i I I t '-I--'-I-'"t I I I t I I
1 2 :3 4 5 6 7 9 9 10 11 12 13 14 15

PROCESSORS

98

91

Be

7?

70

63

5B

49

42

35

28

2£

14

7

0

PE_N_
3U_Y

Figure 4: Individual Computations Per Processor

18

the trace data using the expert analysis tool of projections. Projections performed a critical path

analysis and showed that almost all the computations for each cube are on critical path and that

the average degree of parallelism is low. This degree of parallehsm can be usually increased, as

suggested by the expert system, by breaking the entry points into multiple entry points which could

be executed in any order. However, this did not seem to be possible because of the dependences

present in the problem. We have already split the dependences within each direction into different

entry methods. However, the computations could be performed upon the arrival of these messages

from all direction. Therefore, all of those entry methods will have to be on the critical path. Thus

we concluded that the available degree of parallelism within the problem was very low and further

optimizations were infeasible.

6 Conclusions

We have implemented the CFD kernels in the NAS ParaJlel Benchmarks using Charm++, a parallel

object-oriented language. In order to simplify expression of multi-dimensional parallel arrays in

Charm++, we implemented a parallel array abstractions using facilities provided by Charm++ and

its runtime system, Converse. We have shown that the abstractions developed using Charm++

are indeed reusable by implementing both the Scalar Pentadiagonal (SP) and Lower-Upper Trian-

gulation (LU) benchmarks without any modifications to the abstractions. The higher level array

abstraction allowed us to experiment with many placement strategies and load-balancing without

any significant programming overhead. Also, the benchmark code was developed such that the

communication harness could be reused efficiently by plugging in different code for local computa-

tions. We have presented the performance results for both the codes using different placement and

decomposition strategies. However, the main objective of this project was not to demonstrate the

performance of the code but to demonstrate the ease of programming and experimentation using

abstractions in parallel object-oriented languages such as Charm++. The later was demonstrated

by the parallel array abstraction that made it possible to switch between different placement and

domain decomposition strategies by merely providing a different mapping function at array creation

time.

A Pseudo-Code for LU Benchmark

Figure 5 shows pseudo-code for the cube chare in the LU benchmark. This pseudo-code is written

using a notation called Structured Dagger [5], which is a coordination language built on top on

Charm++.

References

[1] D. Bailey et al. The NAS Parallel Benchmarks. Intl. Journal of S'upercomputcr Applications,

5(3), 1991.

[2] J. Bruno and P. Capello. hnplementing the Beam and Warming method on the hypercube.

In Procceding._ of the 3rd Conference on ttypercube Concurrent Computers and Applications,

Jan. 1988.

[3] D. Bailey, J. Barton, T. Lasinski and lI. Simon, editors. The NAS Parallel Benchmarks. NASA

"l_chnical Memorandum 103863, NASA Ames Research C'cnter, July 1993.

19

chare cube

{
//chare-local variables declarations

structentry iterations: (InitMessage *message)

{
atomic {

Initialization() ;

// Send Startup Messages Containing Boundary Elements

// To Neighbors' rhs_entry points

}
while (iter<maxiter) {

atomic { rhs_init();)

overlap {

when rhs_entry_xml(Bdry *xml),rhs_entry_xpl(Bdry *xpl) {

rhs_x(xml, xpl) ; }

when rhs_entry_yml(Bdry *yml),rhs_entry_ypl(Bdry *ypl) {

rhs_y (yml ,ypl) ;}

when rhs_entry_zml(Bdry *zml),rhs_entry_zpl(Bdry *zpl) {

rhs_z (zml, zpl) ; }

if(x==O tttt y:=O tttt z=:O) {

// Start the first sweep By sending messages to +I neighbors

}
when XmBdry(Bdry *xmmsg),YmBdry(Bdry *ymmsg),ZmBdry(Bdry *zmmsg) {

atomic {

bits(); jacld();

// Continue the sweep by sending messages to +I neighbors'

// XmBdry, YmBdry, ZmBdry entry-points

}
}
if(x==maxx _t_ y==maxy tt_ z==maxz) {

// Start the reverse sweep by sending messages to -I neighbors

}
when XpBdry(Bdry *xmsg) ,YpBdry(Bdry *ymsg) ,ZpBdry(Bdry *zmsg) {

atomic {

buts(); jacu() ;

//Continue reverse sweep by sending messages to -I neighbors'

// XpBdry, YpBdry, ZpBdry entry-points

updat eu () ;

// Send updated boundaries to neighbors' rhs_entry points

iter++;

}
}

Figure 5: LU Benchmark Program

2O

[4]

[5]

[6]

[7]

Is]

[9]

[lO]

[11]

L. Kale. The Chare Kernel parallel programming language and system. In Proceedings of the

International Conference on Parallel Proces sing, Aug. 1990.

L. Kale and M. Bhandarkar. Structured dagger: A coordination language for message-driven

programming. In EUROPAR, '96, August 1996.

L. Kal6, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon. Converse: An Interoper-

able Framework for Parallel Programming. in Proceedings of the lOth International Parallel

Processing Symposium, April 1996.

L. Kale and S. Krishnan. Charm++ : A portable concurrent object oriented system based on

C++. In Proceedin.qs of the Conference on Object Oriented Programmi ng Systems, Languages

and Applications, September 1993.

L. V. Kale and S. Krishnan. Charm++ : Parallel Programming with Message-Driven Objects.

in Parallel Programming using C++, MIT Press, 1995. To be pubhshed.

S. Krishnan and L. V. Kale. A parallel array abstraction for data-driven objects, in Proceedings

of the Parallel Object-Oriented Methods and Applications Confe_nce, Feb. 1996.

N. t[. Naik, V. K. Naik, and M. Nicoules. Parallelization of a class of implicit finite difference

schemes in computational fluid dynamics. Intem_alional Journal of High Speed Computing,

5(1), 1993.

R. van der Wijngaart. Efficient Implementation of a 3-Dimensiona_ ADI Method oil the

iPSC/860. In Proceedings of Supercomputing 1993, Nov. 1993.

21

NAS SP Benchmark Source Code

Sanjeev Krishnan, Milind Bhandarkar and Laxmikant V. Kal6

I)ept of Computer Science, University of Illinois, Urbana, IL 61801

E-marl: {sanjeev,milind,kale} @cs.uiuc.edu

H IJ

_o _ o _-_°° _

i

_.!.!

._q _qll _ _ _ _-r

q_ o _D q_ _p q_ L_ z

'7

=].. o=
,_ ,.,-.

'7

,..f-

v

" _ _c: ,,,._ +

,,_ _ _y_

. _ ._ _

E

+ it_

._ _._,

_.__-_ _

E

•_ --_ ._

1

., -

÷
_.+

J
i/

_J .° .i

. v _ _T_ v
+_ _

L_

. _

•- .-'-

i.

+
N-

i _ _ _ _ __o___ +___

N 0 0

II

+++
II

+++++++ o+,,,,

P_

7_

_p

II

p_

_ i_o_ _ _ p_

I

e,i

e,i V

v +"
_2.Z

..

.q

..
> •

t...

_ _. _._

i
"_ _ _ ',i_ _{ _ li_ _ "_,, _- . _II _

'

i

e_

+ _

L__ ..

II

i_ _ _ i

_o

II II Z

!
i
I

....li
v _

H

_7

b_

v

p_

H

t_

r

Z

"H-

c-_ v

V _ .- o

_ _: _,._
_ I_.

. _
.- _

ee_ _

Z
0

8,

-F

g

._

O

_ _ _ii
_ _._ ,,_

"a

• _ IP I1

-

.- _

oo

]

_NN _

IINN _=

I

.... t_

_jl _q

p_
c_

q_

Q_

h_

_o
J_

N o_

_ _ _ _ o_ o_

.-% "-_ .- I_

C

II

u
A_I ._

5####

Ngg,_g

_ _ ÷

-I-

+

_o

H

N

. ,, ,, _ _o .oo

oo _ - _

_o _
II II II II II - _ N N

"_

__ X_

II II II

II II II

-H-_-_

o
M

• NN

• &_ "'"

0 "_- _ _;

14

.. _ _ _

D O _ _J 0 0 O0 rJ

&

&

.r_

N

N

._

::

rJ
t_

o

_ ._

_ _ -_-_.

._ _

_ _ ._

o _ ._ _
0 _ 0

m _

I
I

[

n.

'4-I

r_

mt

or_

'--I
'--4

p"r.

0

r.=l

o::,t
,.-1

o _

mo

. ._ _

... o°-._

.,-I

'0

rd _

o °o _o

I _1 "_ 0 0 _.10 I_1

_ _. _._ N'_

+_0 +++ +++ +++

II _ II II II II II II II II I1 II

(j _j rj r.J U U

o

o
o o

0 0 0

,--t ,.--t e.-I
0 0 0
01 m 01

TTTT?T'' •=_ _ TTTT+÷+ , ,=_==' g TTTTTTT? = oooo
oo _ ooooo NNN2NNNNo o o o oooo _

II If II II

II II II II II II II II fl ff II II II II II II I¢ II If II II II II il II il II II II H II II II

.... ._ _o_ _ _ _

8 8 8

OOOo

ch • • •

._ _ ooo
L_ II II IIII II If II II

_ C_l ,--t c-.l _-_ c-,i U u•,-I-_ ,_-_-_ _ _

'l:J

.--t (D

o

o _ _

',_ 0 0
._1 iJ

0 0

_ _J

0 _ 0 0
U)

_ x t
-,_ _ _

r, °__ o_,_ _ o o o o o o ,._ (-,;_ _ _ _ ooo
"_'-_ _ ,_ o o o o o o o o o i I i i r? o o o
0 _) _ _ + + + + + + I I I _n_ _ + + +

o o °o o - __oooo 2o_o_o o = _
._ + ._ _

0 b'_ L_ o (_ I_ _ II II

-.-I II II II II II II II II II II II II II II II {.) r_ . . .
C_ _r-4 C-4

1 0 0 0

.w ,w -w

¢J
m.

• r-I ._

i_I c_. ..4

,-_ rj _J X :>, hi _-_'_

01

+++

+ +

X

It II

,,..-t ,,--I

+ + + _ __ 66
_ _ N _ _J _J _) _ _ • •

...... _II II II II II II

. ,, ,,,, ,, ,, ooo x_-_ " " "
-,-I -_1 -_ _J _ _ _ _ _ ,-4 ,-_ ,-_

D rJ rJ (J_J 0 U '0 (J rJ rJ rJ U U U r,J rJ U U U '0

u_

n.

u_

0 0
O_

_I 0 0

rq

o_ II II
Ch

,--I vv .t-_ _J

t_

¢J ¢J ¢i

II c_ cq _q

_3 • • -

" + + + X :_i,i

l.f')

_ _ bl t_4 g4 g-i

h

a) r_

4"

I"_ N

_J

Cu _

rl.

II II

ill _

_ +++

,,,,, _

_ mmm_mm

ii ii ii

Ill _ III

N_ +++ X_ _

II II II II II II

mm _ mmm m_

• -- _ _

0

• .. _ _@_ ...
III...+++

o_ggg ._.ggg o.oggg _ ggg ._. _
II II II II II II II II II

_4

Ch

<

_a

0
o

_ +
"0

0
.._ 0

-r_ II

_0"0
,0 U

'_ 0

0
u

'D

_ H I::I

i/1-rm .

_ _;,,_o

_ 0

_ "n_

C 0

I1/
'D 0

'_ o
r,, D
0_

o

d m _o
N " {2

_ >. . -_ _

C m - E oo'I_ -,-_ _ c, N I_ 't_ O_

o N_ .>_, '_ 0
.m r_ ._, .0,1 _ o C'D

m. X _ e_ • X .

0 _ D'I 0'I _ 0

OUUU 0 O 0 U

0
u

+

" _c

_ _..A "

_ X (_ N II _ _ 0
_ _ _ ,el 0 "el

._. l_UU_o
D ,"" U_ 0 c,,_
0_+

_ Ov _
C'O 0

0

u)

_J

o%

c_

{,1
C_

o_

N

N

N

m

d
N

-_

-._

U 0

r,

_) r-,

o oooo

0
o

d
.i.J

'El

0

_J
n.

44

t_

o_

.°

o,1

N

-n "n -r_ "n
-H _0 0

t_ _-_,_ 0 0

o. ,o, ._ _ ,_• H _J

.o _o _g _
0 0 r" 0 _ 0

U

o _a X N '_ '_ • >, - X X _ j N • _ - N

• _ _ _ _-- o,-,-,_.._.. _. :_,, _ o ,, _ o _,, _ o

-_ _ g ,1_ !! II II r_l 0 01 II _ 0 I_1 II _1 0
II

o • _ _ _ _, • o _.,o o =._,. o
,_ ¢_ _ >_'t::_ N r_ -r-_"O _ _-n'_I _ -_ _.r-_:_

I/1 .,U 0 .H I_ -H O_ O_ O_ O_ O_ O_ ._ _ • ._ '1:1 • • ._ "_

" S0 0 0 _ 0 0 _ 0 0 0 0 L) U 0 0 U

0

0

nO

m

%
o
r,

t_

0

i0

Z

C

X

Ill N -

_ m
0
a & ,

II

_ o

m.

q4

< 0 0 0

oc_ oo

o o

o

O_
rd

I,M

r_

r_

r_

t_

O_

'< 0

_J'O
01 r'

.,-i .,.-i

4
d
.d
d
A

u,4

4

"0

0

.Q

&
03

rO

(J

@

rO

r_
(/1

_o
ox

H
r-I

'<

0

-_ Ln

.,_ I:
_J

5 _

r_

o

e_. 4J _J .u

O
_ m

_ X'IJ

c w _
0 _
-H O U

_ 121

_ 0

a _ ,s

' .

' mm _
"NNNN

-_N_

N_NN_ _

NN O

- _

• •

u_ _ -,_ u_ _ 0

-,-I _ i.-I

-H _ 0 "_

..Cl .,

O O U U O O O 0 U rJ rJ O rJ O O (J L) 0 U U U O 0 rJ

•. ._. -_,___ ._ o o o_. ,_,_._,_ -_ ,-
. .,,_ .. ,_- _ .,,,_ _ o._

0

o

1.4 II II II 0

_. gggggg _

OOOO O O

_J

U_OUUUUUUU

u_

o_t-4

,<

-, _.,_ i_-_

II II II

O U O 0 U L) rj U {J U U 0

h

J

h _J

• ._
N _NNN

_ _.-

X_ 0 _NN

_ "_N_

"_ X_ -
-._ -XNN

d _

._..

UXX "'_

UU OUUU U O UUU

N

N-H_

- NN

....._SS
-_.dd o
_NN "m

• _ ._ "_....

.,

0
-H

.iJ_._.. _..... _o _ _ _ _ _ =

0 a_ -_ -,_ -_ J:_

_1 _) II II II (_ r-I

"El r_ .,-_ _ O1 bl b_ O1 _

O

O rJ O rJ U rj O O O rj

• _ _c-I -r¢l

r'
I._ 0

h

_J

U UUUU

- N

0 N_OJ_ - -,_

_ xx x-

,_ -._ - . _._ "'_

_J tO N N +

.__._ o

-."I _ {/) LI_ N N _ _ _ r_

_ _ _o
-_ 0

._ h _ r_ .

O U _U U

r.

-_ o-i

.,.-i .,.-i

._'tJ

4
d

o

g.4

4

_NNN

N_m

_dd
d. NN

._

NX X_

_NN _

"_ 0

0 _ _

u U OUU_UU

A

-n

-n -
-M

E

+
II

'.D ,.,,(
c-4

U) N - U)

¢1 - m 0

ii

-n 'I_

_ O

$ o
't:J

,-.4

t_

O
'10

"0 0
_'"0

"0 0

0

u u u

@ ,-

u')
v .

:::1

_ _ - o

U _ hi _ .Lr_

o 6,o
-M _J 0 _1

O :::1 .,_ C_

tr_ t_-

UUUU_U U UUU U

A

u7

u)
r' II
0

_ E

0 _ N N

0
0 _ -_ _ _

• m r-t

o _ _

_J
_ O

U

U U_) U r.) U U U U U

,4.4

Cr_

,-4

<

o_
0

t_

N

r_ r.

.,-i

.. o _

• ,-_ _-,-I _-,-I _:)_-,-_ _) 1::)4 J:_
-,-_ ._ .,_ _:_

o) l, ,, II cJ _ I_X _ N m O 0

-,_ i_i_

U U U U _J U U

_ = ._ ._

m m

o 0 O

r.

-_"0

UUUUUU

-M

-,-t N

N_

_ -_o _
:3 f0 _ II g

r_
-,-t

o

,D

m

r,
o

.,--i
iJ

c)
-,-t

.,-4

E

o

u

_J

r_
o

_ _ _ _ o _N O

d) .-4 -,-I -,-I r"

._ • ,, ,,_,, _
_ r" _j r' _.J r' 0

.,-_ _ r_ .,._ _i_ _ ,'_

co

N

_ _ _ __"

o

o _ .. _

U UUU_U _ _UU

0
0

_ -,-t

_4

_ 0

N _ .

t_,- t/}

0 N
.,-i

o

un

E

EA

_.. __ _ _ o
sJ _ _ 0

__ ._
• 0

II

E

E

o
o

_ _ _o _
0

0

0

r'

o_

i <

II

E

+

• 0 _ 'lJ -

"_ _ Q'

_ _ _ _ _,,_o

o
n'1

b_

n,

r_
rd

ch

8
0
0

0

°
II 0

_J .
_ JA 0

0

cA 0
ul _ '13

m,

r_
r_

_D
07

tm

,<

>

_ mmmm_

o _ ._o

I1_ 01

_ ._,

0 0

.,.-I

D i. RD
-M 0.I -M - -

0 0 0 0 _1 _ 0 0 0 0

, -,-_ -_ -_ .,-_ ,.c: _

L_ -M I l.r) .M I l.n -,._ i i._ -M 1 I."I -,-I I_ U'_ I Lr_ I m i i._ i Ln

0,-_ -_,-_ -_-_ - _1,-I _ _1,-_ - t_ _D_ 0,-_ (_,-_ _,--i _,-i _H

- 0 - 0 - 0 - 0 - E - 0 0 0 0
" (I _ II - II - II - II - --M " II II II II II

-_._ o_,_ o_ o_,_ o o_ ---o

U 0 O (J

¢)

n_

I.O

,-.4
,-4

,-,
k 0

m r.

0 UODD_

J_)

(_

0

•,-I N

r_ OJ UI H
_J _ N N

i_ _ -,-4 I/} _ -_ -

g -

-,-I _ "--. 0 -M ,_ -,-.I if) 0
{_ _ 0 (_ O0 .,-I 1,4 II II II II "f-',

-,-I _ _ _ _ _J _ _ _ 0
0

U

• -4 I

, :>,

{.) ,--I

X ,'_ "_ ,-_O'D

- H v _'j II

I 0 0 L _ II II 1'_
'" "_ ._ (n _ 0

_o

r¢l

0J
"c$ 0

'x_ 0

Q)

U rj U U U

un

&1

_ _ _ _ _ .

_ _ _ -_

0 _ 0

A

r'

v

_>

+,_ .-_ "0 _ "0 0

nO '_
I::I 0 "_

O D D O OOUDDO

0
"el

A

i

O) , _[

oi . ,it

_ <r> _<
(lo N • _ Ill _ i
1,,1 ill l,,,i

,-, ._ _' ._ _ -•

..... r-I {I) _ -.-I -r-I -.-I 4_ II l_l

_ 0 Ln _ U f.) IJ {J _) (J {J r.) _j r.J _I II _ 11 It If II _ .,-I +
• _I,-I _I _ I_

,_ o_ - ._ + + + + + + + + + + + + _ _ - o,-,,_ ,-, . . _ o . ,_ ,_ ,_ . _ _ .
- g

II il _ _ X X X X X _ K_

"Ci _ rt I' " _ ;;:1 _ l_ II 'l:l 0 " l__

_ 0 _ 0

{J

U_l R-I

u)

o'_ -,-4

i

.w

{.)or..}

,-4

r4

"r-_

"n O

_0 • _ _ _

D_ -,-_ 0

D (_ 0
.._ v N "_

O
"{3

U U r..> 0 U U

n_

X
_$ N

X, * X _,

,1}.w _le _J ,'If.u

_ N _1N N 0_ N N _

u

U_UUU_UOUUU_

+++÷++÷+++÷

@
D

0

n_

-r-1-n -r_

_A4

.r-_ .r'_ .1-'1

I

.r_

kq
v

+

,--t

X

_ rn

u u u u

.w

i

-n

Lq
v

D

+ + _ - . .

II II II II

• rm -n -r_ -r'_

rq -m_ Ln

X X X X

U U U U U U

-m
"tJ
e_ o

@

0

• _

g .
_ ,'(J

,_ uu

v_
0

-,.4_O

o U

A

_oo _ooo

_oo _ooo

_+I+ i+I+

g_ g_ X

0 tl

+ +
-,-I-M .M ,M -_

1.4 OOO
_M • • •

II
I + I +

.e
-ira

0
'El

o O o O

0

ill

@

_J

bq

_J
Iz_ II {.) I

v F; _._

O
-,-.i"c}

I_ _XXX

ooo _ oo

'+' _ '+

2. "2.

_m

u u u u

O

O
"O

111

0

"0

U _ 0 u

"r-_
J
X

,M _ A

o

I +
.ij .,_ v

C_
_ + +

K_

,.M

c._ "v1-_'_-_u_ _u'_

tc_

,,_ o o

I _ +

• _ vOO vooo

iim_ _ _+1+ i+1+

_ _0

0

0

@ @

fq

II

0

A

-nl

,, _ •

_'+'+ _ ,+

0 _ _

_0
-_

U U U _ U U

n.

r_

,.D 0
o-, 'I_

$
e-i

i
.n

X

,.--t

i

A +

-A e"

1,4

"n

-,-I

k_4

0

E) {J

,r_

I

A_

*%

-r_ -n

+ +

•-I _ r"i -r-i-r-'_ .w

-r-',",'-_-r-,-f_ _ "_. _ "n-r'_ + _,

.... _ _ _'_ .-_

II II II II -rl "r-i-r_-I-1 .IJ _ ,1_1 1.)

,.M ,-4 _ - -

. ,_._ ._-_.,_._ x_xx

0

A

_ "_ -_

o _ o _ oo _ o _ o
. +

- o . o . o

I+ _ I+ _ I+

_ "_ ._- _ ._

o ,, _ _

0

U U 0 U U

a_

n.

oh

rl

,<

-M

o _ oo
o

o _ oo

I _ i+

._

,--i

i

Cl v

/

× _ o _ o .

, - ,-I "1:1 I/)

0 _ 0 _1_ _ -,-I _ II It ._ _

_31 _._ 00_ I:_J 0

. o " _ "_,, " _-. o

O - _ _ 0

¢J 0

0

L) 0 [J 0 t.J _0 0 L) tj L) O U _J (3

N

• _J

0

_3 _ _ _ _J N
_J N _ -_I l]J

X * X *

E E E E EE E E E E E E

uooouoDuoouo

_++÷+++++++++

v_

_ o

o

'CI "_ II o

_ _ .,_ ,,

u,4

A

OJ QJ QJ

oooo

o o

+ i +

0

0
'0

'0

-_

_ +++ _ __ _ oo..

- Nm Nm

_0

0
"tJ_

0
,._

_J

U U

0
.,_

.M

-M

A

0
.M
v

• M -

o -n
o -_

"r-_ 0
-H r_

-H _ 01)_

_ .,_

• _ ,._ .,-_ ,._ "_- 0

0
"O

.ul

,-t

0 _ I

Ill _ ,--i

I11 i _

°,-t

,.el _ 0 0

II II II
°° II

r_

o4

c_

,--i

t_

,--t

v_

o
o

o

c-i

i +

c,l
v

N _

+ _ aJ _J

._ _

_d

rn

_ A

,_

+ _ _ _

.a_ ;
- o

- f-I

onf_ c_
- N bl

_d

.,4=
- o

.,._ ,,,i:1

,,_÷÷

_d
1.4

_M

_n

r"l A A

_ bq u'l L_

,r'-I 4"
•n _.4 't_

- 0

g-I ._

"2_ _
.,_ _,_

_÷ +

0 0

0

1.3

0
I

_uu

r'
Q/

• u'l -,-I

'._ 0

_oo
• °

N_

-NN_N

_oooooo

ooo

{_ i -t- I +

"r'_

0
'I:J_

il

0

I I

-_ ::J
...-_

_-4 0

url -,-4

_4

0
'l:J

o

_o

-r-_ v
v
.q A
0 I

"n _ v

o° _ _
0 II -.-I -r'_

II "_ 0
N

-_ _ 0

II

.@
_ 0 II
_ '_ 0

$ _ o
• . _ ,'_

,-.-I

"_ 0

"0 0

._1 o
'

I
" N

0 r',l

I_ -r'_ +
I

,._ "_ o _
•_ -,4

_1 _ o0 II

o _ u'_

o.r_ _; o _ 0

• _ '1_ ._l
o _' 0 _ 0

UOOU O O _ O O _ _ O O O O

* X *

n,

H

N _
-m + + + + + + + + + + + +

3

1 t.,_ .1_> i,_ i¢> t.¢> _- t.r_. f.rw t._ t._. t,,i. t¢>

0

+

,M

II v

0

_ o0 H

O_ 0 II 0 0

0 _ -_
¢J 3_ 'D OJ

al

< _ rj _1 rj

II

._ r_._ ,-_._ r_._ r_.,_ 0

II II II II ,'_
_l II II II II II H

0 r_ r_

0 61 _ ._

r" 0 -,'_

o o ,_° o
.,'4

0 e.-I _ ,---t e-I

-M 0 0 0 0

o r.-i r.-i _
i1_ 0 0 0 o

r,.1 _ r'-,1 _1"-I Me-1 _r,,i
0 0 0 0 O_ 0,_ 0,-I O_ O_

"30 0 0 0 0 _ _.__

i .,_ .M .r4 .M
- II II II II II

-,-1 •-_ • .H •-H ' "H H _ I I _ I I

..,_. _..,_. _.. _.__o _
X_n x_n Xm Xm N o _ m

o
o o

I1)

r_

_ Ill ..C

._--_
o) N _1
N -_ -_

N N
>, ._ ._ N

_ N N i_
N "_ "_ 0

g} _ N U}

d_. _ "_ o
-_ _ _ +

- ul N N -
>, ._ -_ o

-M _ - - -M

_ _ _o _ o

-_ _ _ _ o
-_ X -_ < _ 0

o _ _ - _ _ ,,

oooooo
4- +

* 1 +

m bl (n

+ + +

"2"2 2

II II II
_L4

X g N

e,_ 'D 0

m

,,..-t

,1_ 0

,

0 0 o

A

._ ÷
v v

n "_,-

+ _ +

,--I ,.--t

o_ 0 Or,_ 0
o _o_ _o

Ill C) 0 C_
I_ , •o__o
0_

I I + i
u_

• II Jl II lI II

_00000

00_00

II II II If II

..... • NNXNN

o o
o o

ooo oooo + +

ooo oooo o_o
o_o_o_ o_o_oo _;_;

oOOOoO

+ i + i + I + _ o o o o o

+ + + + + + + _ _ _) + + + +

11 11 q_._;._.lJ

.__ __ + + + + + _
___-_...... -_-_-_-_ ,_ _ • _-_-_-_-r_....

o """ """. - ,_ _,q u'e • -....

_ ._ _ _ _ _ _ _
0

0

oooo

+1+1

aJ

¢1

r_

n.

M
,--4
,'-I

I_.
rnl

,<

A_

_ _ _ _°°oo _
+++ ++++ oo

o_ o

+1+ I+1+ _ ooooo +1+1 +1+

0 II II II II II I] II _ _ _ _ _ _ ' II II II II II II 11

_ _ "

0

0

_0 0

"0 0 r_

J I m

A

¢3

U

r_

r_
-,-I

o
_4
n

ul

U U U UUUUU U

-,-.i .,-i -,-i

i_I r'nl r,+i ,_ ._

_ ooyyy °o

_ o• ,--I ,-t ,--i I:D

II II II

m

$
,-.-i
,--i

A

I

-r7

+ + + +

,_ 'lJ 'l:J n:J 't:l "t:J

_ ,,
II II

• r-_ .r-_
_ 0

I
-n

+

+
-r7
v

o

+

_ _ _ _o 0_0
 oooo oooo++ +

..... _ o__o _
HOOHO0 IIII H 00_00

• ,, ,, ,, ,, ,, _ _ _,, ,, ,, ,, ,,

" _ •

_ _ _ _ _ _ -_+ + ._ _ _ _ • _ _ _ _-_

U _J U L) U 0 U rJ U L) _J

o_
_ 66

_ oooo oo

• It II II II It _

0 _._ ._ -_ ._ ._

$
..

o I I + i o -- 0 II II II II II II II

• ,_ _ ,_
0

0

o
o

i

++++

II 11

A

I

+

v

II H H II II il II
_ _ _ _ 0

t,l

.,.-t

0 _ :zl _ 0

._._._._'T

0
,[J

rid 0

_D
_D

Ill

o 0 0

ooo

ooooo

+1+1+

+ i __

,, . __

+++++• _

• _ _ II II II II II

_ oo°°_

oooo ooo

+I+I +1+

++++ +++

•M-_-M-M -M-M-M

• II II II II II II II

• _ _..

H

o
0

_ aJ

N
-M

N

d
N

. __ o _
r-t I1_ ID

° ._ _-M C_ (_ _-_

• _ _ - . _ .

_ _ 0. _ _ -
," _ < i.n _I _ ,-_ -,-I

= 0 . {"4 _ II-,_ _ <'-. _ _ o

_ z -_ _ " o

I,/I 0 0 -H _

0 O 0 0 0 O_O D 0 0 O 0 O O 0 O 0 O

(d

r_

m .=

I-i 111

N

"?n ";"_ Z . ".,-i
c-: 1.4 --

:>I LI -,-I N

.... j_

..... ,.-I
-,-t c-.i m ._ _

_ + +

_ ,,_,o

N

N i, "_

_ _ "" >i .-, _. . _ _. "_ :,< _ ._ •

r', q) :_ IZi N It 0 (_ _ E: u

0 _ _ h 0 _ _ _ II 0

, - o , _,- _ _ _ _, . o
0 'V';- ._,";- .L,'_,V)-

0
U U

C) U U L} U U U (J U U U U LI U U U U D _J 0 U U

._ "n -r_ "n -
.... "n

-X X X,_

o

"_ o

_J
"a
r'

U U

A

c,_ ("_ (xl

N - - - (_

.... "n

,-4

._o_

O II '_I

u_

r_
u_

r_

N

A

._d _ 4 _.

+ +

_ ,,;o
-_ o

.o_, _ _ _ _ _ • _ ._,

_ _ _ _ _ II _ 0 _ ::3 _. {/_ II _ 0_-_ - JC: 0 'C_ -_ Jc: 0 'El

o E: _ _ o (_ _ 0 E:

L_ 0

LI L) L_ _J O LI L) 0 0 (2 L) O O L_ O rJ rJ L) {J 0 O O O 0 U

n.

_4

C_

Ch

< U U U

N
-M

_ +
-M

_J

q_ I..4 II

v U - _ +

"0 _ ii '0 0 r_

0 _ _ 0 _- _ N

0
U

_J_u _J u u U _) _ u u

N
-M

•r_ c_
•n _ +
•r_ N "n

-M

" _ _

_J

.,-t

C • _ - H _ 0

0 • _ 0 _ _

U

Im

_J

-M

-M

0

0 • _
1.4 _ ,--t

0
U

LI _ r_ rJ O_U U

,--t

<

h

C

0

0

U U U

N

C_

•n >_ +
"n _ "n
"n _

J_

_ -,, _ _• ,-I ,,-I

0 OJ _ 0 _ "_

_U U (2 _2 _2 t2 U _5 _2

+++

o

r_
m

_. ? +

r_. I .M o

• ,_ II

,-_ 1.4

iI 0
oo ,.54 "0

,-t

0

_: 0 rj U U C)

0

'_ 0
r_ 'EJ

r'

,_ ." ? +
>_ _ -,_

H I:_ Oa -,-(II

0

._ _ _ o

U

U U U U U O L) U U O

. + . +

+++

o

L) o rj

.iJ
r"

{/} O bl
X Izl -_,-, ?

.. _ '- -_ ,,

0 0) ::3 0
I.-i _J

• _ l,-i ,El

c, u U o u o o u u u

,-i
_ +
"n r-I .r-,

-n _-I -r_ ,-.I

_. _ + + +

• r--i / -I-

r'x -,-I

t-i -n ,--I

I:_ ir_ -,.-i II {,_ 0
,--_ -,._ _

0 _l _ II 'El O (_
Ln 0 r_ ,._
• . _1 -_ _C_ _

,-_ _.' 0 r" • 1:::

_ in- .v} ,I_

0
'1=1

_0 0 r,

OJ

o u o

0_
OJ
_J
R

v _ _ N

o _

-,-i .l:::

'¢I *
0 OJ

a-) ,-I ,-I

r_ I::: (11

0

0 0 0 O r.J U O O O

D'I

n_

k_

r_

r_

r-I

=I

r_

II

h

Ill
.IJ

-,-I

Q_
D

(Q

c_

v

o

SD D D U U O O D D D O 0 O O U O D D O O 0 0 D U U U U U 0 U

0

D U u

1.4

.,-i

-_ o _ o _-_

_) _ ._

D D rJ O U U U O O U U O

r_

u.4

e-i

g

g .G

._ _ _ -_

__ . _ _ _. _ _

N
v -- '0 X "0 0

O_ '_ .} 0

-H 0 -_ 0

_ _ _ _ _ _o _. - o

O_
r_

.,-¢

_J
r'
0

"El 0

_d 0
OJ -_

'El _

_J _J ;3

N

.,-t

>;
r_

g
.,-t

.,.-t

"O {J

- N II] J::

_ ('! 'El 0_ -

I"4 _J r_

."_ q

, ,_-'__ ,-,.,-,,;,- I i -

x N × _

-,-t _ -,-t _

v r3 v U

•
•.-t .,.-i

_ + + - + +
LCl

"CI 'I:::I

,,--t

,< U U

0

A

AA_

xx
.A_ .A_

_oo _o
_ _$$ _+++

I+ I+I+

0 • _

• _ _ _ 0 _ _ 0

0

"n -n ,_ -n -n

t'N rl .r'_ rt f',l

.,-i .,-.I

_EEEEE

-n

...-t

_" N°N

II
I + I +

"r-i

II r_ I

E
0
,cs

r3

0
'0

"0 0

m
'0

(..) 0 C>

-r-i

I
_X

X
0,)

o.I v

II

0J

0
-,-I rO

r_
i-_ II
r_

E

oh

i

X

i

÷

-n X

E
"0

-n

'0 0
:

'0

o;

0 II

r" 0

U U O O U U O

A

-n _ -n

-n H

e-i ,.-i ,,--t

ul

o

_ U

-,-t

r-,i

- (_ _ (_
+ _
-_ _ _ _

o

r-,i

q

i i - ÷

._YYY
,-C ,

.,_ _,

. + +

_A

m,

oh

.°

Im

0_

I

- Zl

01-r-1.rn "n

I
_ ._ +

0
-.-I 0 II II II II

v 0

II 0

,--I II

I

I

+
"Ira

%
II _.J

.r-_ "n "n .r'n . ,.-4

X X X X E

g _

t/_ t._ .l¢l-

u _ u u r_ _ u _ rd 0

A

I+I I+

_ "_

m

g _
0
'l:J_

_ o

u r,j O U

0

o

m.

C_
r_

_-++

o°°o°

,_1' 'uD "_l'
II

i + I +

"r-1 _

°,-I _

0
_0

_ oo v
_ +++ _ ++

_ '+' _ '+

_ -_ -_

U O U U U U U

0

0

0

O

0 O o

0

lq

r_
O_

UUUUU

N

N •
-,-_ O)

_ __

'l:J _.... d_

_ _ .,_ _ _ _n .,_

-_ ._ -_ < -_ 0

rj_rJ U rJ U U O O U

n_

k_4

_D
Ch
Ch

.°

<

"n

.M

_,--t

"n >1

>I . +

0

I - +

o
o

o

c.l

i +

i . +
•r_ "n "n

I - . -

o

_ e

._ %

in

.r'_

• r-_ .r'_ .n

• H .M .M

,Mr_r'qr_

.n_

o

I +

.f,_o_
-m_

-,-I

r,n

'lJ
m
_4

.r-i

LI_ i - +
._ .r_ "n

i . - -
.M .M .M

_4Qd
+ _
"n_

4 •

.._u,.l "lJ
o

.n _ °
I'N

I +

'lJ

-r'_

I - +
-I'-_ -n -n

I - - -
.,-I .,-,I -,-,I

4-

0

-_
-M

• + +

u u u u u t) U

r_
0

-M
_J

n_

0
I

.C

0
u_

u_u

C
@

Q_
.u_ -I_,

-M G_

II '1:1 I

'_ 0

_00
_++ _+++

_+i+ i+i+

tl u o

0

.M

r_ I/1

rq

11
0

0

U U

O;
n_

4.4

o_

H

_ 0 0 + + _--_ ,-_

..... 0("4_
{',1c_4u_ + + ::1 _ .,-_

II H II II 0

.rn

o u u u U 0 U u u

z_

0
.,-i

._ • u_

0 _ 01 II

v E

¢J h .H _0
0

1.)

o

i.

n_
r_.

oooo

n,

o,
01

_o
o_
o_

... _<_+
(_ _ 01 IJ1 01 _ "n-n'n'n'n

"n "n "n "r_ "1-_ "r_ -r-_ ._ -_ .,-I -_ -_1

.... •i-i

• r"_. _1 _ _ "n. _ _ _ _ -_ ",, "_ "_

......... _ o°o°o °

_oo _OoOO _ __ o
rid + + _D + + + _ 000

_,_o_o_ _ • . .
..... tl

_ + I + _ I + i + --_

"n c_ _ I_'_

' _._ _ ,, _,

u_ _ 0

O O O 0 0

_J

O '1:i - . I.'1

'_ 0

NN_N

_FFgF _FFF
-m_ ._

F NNN F oo
+++ _ ++

i+i _ i+

O O O O

0

o; o
c-, Z "0

"O 0 '-'

qD

0 0 0 0 OOOO

o_

0

r_

i

c,

d __
ID 0

,.--t

'lJ 0

"_ J_ R5

• _ 0 r.Q ._

0 0 (D cQ
-,-i

0 u/ _

• <

0

',_ -_
_0 _NN

_ NN
O_ _-_-_

_ _._ -_
_ N-_-_

_XX

_ _ _-_ _• ._
• N-_-_

-_ O_ ._<_

o_

!_ m X X - _J _j _

.1_ II
_ 0

'_ o

.q

A

X -r'_

+

g.-I

_ .._
.C - X -_ -

_ ..._X - -_

o

0

0

o o O o

0

"0
I

0.1

d _

0 h

• _ (.)

I_-_ ._

•5 "__ ._<
_ _r_o

o .oo _ - N

0 ._

O_ _m _

rj [3000 00 _I 0 tl 0(30 0

o)
.LI

_)

0

¢1

I

r_

J _

IJ .,-I

"l:J I_1

r_

O_ -,'_

I_._

o O(.9
I._ -M

0 m
m _

0 U O 0 O_ U

C
0

i

4 _

d_

_X

_ d

o o

_ H
0

J.J
11)

0

i

.o
r_

CU

r"._ ,,_

1_-_ _ _ ,,-_

P
Ill

_k

N

$
.°

<

_ +

• -

u'J N N ,-I _ .
N -M -M

U

X -,-I -,-I 0 - .

" _ I_ I_

_ _ - .

"_ _"_" _ C 0_a

0

o
0 _ o nD

<

O 0 0 0 0 U O_.) 0 rj 0 0 O

0

0

• r_

o O U 0

I/)

0

N N
.iJ N -,-I -M

_; _ _

.o _ • -"-_-oo

•_ J_ _I O

• I.Q

-,-_ 0 _ -,-_ <

• <

UUUU

_J

u)

0

I

c_

Cu

"0 _ •

Cu •
i1) _ (.)

-,- ,._

-_ 0 _ -_ < _-
._ _ _crjo

o o _<_

0 m r,

< o

o

'0 0

"0 0

"0 ._"0

U O U _)

_J
u_

C
o

r_

I

r_
@

g-i

-,-t

_s _g

_11 r"
0

-_ 0 _I -_ <

0 _ r'

0 O 0 0 0 O_J 0 0 0 0

"n'n'n

NN...

._ ,,_

• _'n'_-m

_ o

., , , ._ , , ,

-n "n .-.I _ ,"q "n -rm ,-_ c-I rq

"n ,_ _.} II II II "r-_ t.3 _ II II II

(_ II II"n ",'-_ -,,-I -.,-,I -,-I -r-_ .,"-_ -,-4 -,-,I .-1

II .,-i .,-.i _-4 c.4 _ ..-I -,-i _ _ {-q 0

_J U

F_

F_

'_ 0 0

r_

0)

r.
0

N

• d

N

m N

C.,-I a, N

• _ ,_

(J U O _J {J_OurJrJ UU r0

@

n,

r_
m

r_

o_

°.

0

-_ _) .

_ r4 L_
.l,J L',.I-,,-.I -..-I

X -_ -_

d _o_ _ "_..

l.i] N N

,_ _o_ 0) N N
C-_ _: _ . .

. _ _ _ - ._ .

-_ 0 _ -_ < _. _ [_

0 0 rD _ :_ '_1 _

0 _ r" .u> .u':- 0 r,"

"_ .k
U _J (J _J _ _ rJ U U r,J (j _j U rj U rj r,j (j

n.
D.

o,-,

tq

t4

Q;
L'4

,g
r4

-,4

X

Lr_

N

LQ
N

-,-t

_ o. ,r4 ,--_ ,_-4 o

b

N

"n _

... ÷÷

_ G9 II o

r',. . >I u i_

P 0

- • . 0

•tz> {_.-

A

II1+

_-_o_ _ _
. _-_ II II II H II II II

rj 0 0 r_ 0 O U 0 0 U 0 rj 0

I I

+ ÷

w _

II II II II II
,-i I_

• r_ "n "n -i_ _ "n "r'_

II il

_a _/l _ cqoq _

0 0 0 0 0 0 0

O 0 0 0 rJ rJ U U

0

0
.r4

.,t

P

o

b @ 0

0 u}o

_ 0
-,-_ O_ -,_ ,_ _-

_r_o

n,

o-+
,-4

,-4

t_

_ +

+ +

._ +++

- II II II II II

I

.

II II

u o 0 o

0
'0

O

O
O

O

• _ _3

o o o [J

u
¢>
u_

o

O

_ o

t.M I_1 I_ II

_ _ •

O N tO

• _ I:: -,'+ m-+ t_ _ "-++

O ::::1 O _ _

rJ O O O O O

N

L)
N

O
N

>

O
t_

-,-4

0
_4

m

u,4

0

o5
o_ '0 0
,-_ r-, '0

t_

bl
-,-4

d

¢" "n
0 N -

• P+ ,-_ - - -
, -,-4 _ .r-, "n .rn

• _ [x] . Ii o

-_ _ ,_ _ "_- 0

0

c_ v 0 m

0 0 -_ I_

OL> L3OO O L} O O O LI O O r j

0

A

. +
++ _ _

"M._'H'M.M

mm
II

O O O _ L}

D_

r_

H

t_

<

U,4

r_
U_

C_

O_

'<

0

H

u} OC_

om t,9

°" _e.

_2

t_ i¢> i¢-s.

o
,--t

0 U

,--t

O1

o.

A

O000000000UOOUUOOUOOOOOOOOOOU

0

v NNNNN 0

"_ ._._._._._

-H NNNNN

- _ _ _°_°_° _ _o

I 0 0 0 0

0 _ 0 _ 0 _ 0o _ o 0 o o

o o 0 oooooO00ooo o

c_

- X _

: _-

)
0
0

o_o

... ,_ -_._
>.- ._ -

C 'I_ _ -r_

. . . __

•_ 0
0

_ 0

_ 5
_ 0

S "

0

_ NNNNN 0

0

_ _ _

0 _ 0 _ _ o

U _ U U _ _ U

0

U

_ UU_ UUOUUUU_O _ _

